USN

10EC63

(10 Marks)

(05 Marks)

Sixth Semester B.E. Degree Examination, Aug./Sept. 2020 Microelectronics Circuits

Time: 3 hrs.

Max. Marks:100

Note: Answer any THREE full questions from Part-A and any TWO full questions from Part-B.

<u> PART – A</u>

- 1 a. Derive an expression for drain current of a MOSFET in different regions of operation.
 - b. Explain how the MOSFET can be used as an amplifier and as a switch. (05 Marks) (05 Marks)
 - c. Explain different biasing methods in MOS amplifier circuits.
- 2 a. Draw the development of the T-equivalent circuit model for the MOSFET. (05 Marks)
 - b. The NMOS and PMOS transistors in the circuit shown in Fig. Q2 (b) are matched with

 $K'_{n}\left(\frac{\omega_{n}}{L_{n}}\right) = K'_{p}\left(\frac{\omega_{p}}{L_{p}}\right) = 1\frac{mA}{V^{2}}$ and $V_{tn} = -V_{tp} = 1$ V. Assuming $\lambda = 0$ for both devices, find

the drain currents i_{DN} and i_{DP} and the voltage V_0 for $V_1 = 0$ V, +2.5V and -2.5V. (05 Marks)

- c. For a common gate amplifier with $g_m = 1 \text{ mA/V}$ and $R_D = 15 \text{ K}\Omega$. Find R_{in} , R_{out} , AV_O , A_V and G_V for $R_L = 15 \text{ K}\Omega$ and $R_{sig} = 50 \Omega$. What will the overall voltage can become for $R_{sig} = 1 \text{ K}\Omega$, 10 K Ω and 100 K Ω . (10 Marks)
- 3 a. What is MOSFET scaling? Explain about short channel effect due to scaling. (05 Marks)
 b. Explain with neat diagram of Wilson MOS mirror. (05 Marks)
 - c. Given $V_{DD} = 3V$ and $I_{REF} = 100 \ \mu\text{A}$ it is required to design a basic MOSFET constant current source to obtain an output current whole nominal value is 100 μ A. Find R if Q₁ and Q₂ are matched and have channel length's of 1 μ m, channel width's of 10 μ m, V_t = 0.7 V and K'_n = 200 μ A/V². What is the lowest possible value of V₀? Assuming that for this process technology the early voltage V'_A = 20 V/ μ m, find the output resistance of the current source. Also, find the change in output current resulting from a+1-V change in V₀. (05 Marks)
 - d. Draw the BJT constant current source circuit and explain it.
 - a. In common gate amplifier with active load, obtain 3-dB frequency for using open circuit time constants. Draw the circuit required for determining R_{gs} and R_{gd}. (10 Marks)
 - b. Consider a source follower circuit, specified as follows : $W/L = 7.2 \ \mu m/0.36 \ \mu m$, $I_D = 100 \ \mu A$, $g_m = 1.25 \ m A/V$, $\chi = 0.2$, $r_0 = 20 \ K\Omega$, $R_{sig} = 20 \ K\Omega$, $R_L = 10 \ K\Omega$, $C_{gs} = 20 \ fF$, $C_{gd} = 5 \ fF$, $C_L = 15 \ fF$. Find three capacitances C_{gd} , C_{gs} and C_L . Find τ_H and the percentage contribution to it from each of three capacitances. Find f_H . (10 Marks)

4

- 5 a. Draw the two stage Op-Amp CMOS OpAmp configuration and briefly explain obtain overall open loop gain. (08 Marks)
 - b. The differential amplifier in figure uses transistors with $\beta = 100$. Evaluate the following: (i) The input differential resistance R_{id} .
 - (ii) The overall differential voltage gain V_0 / V_0 (Neglect the effect of r_0).
 - (iii) The worst case common mode gain if the two collector resistances are accurate to within $\pm 1\%$.
 - (iv) The CMRR in dB.
 - (v) The input common mode resistance (assuming that the early voltage $V_A = 100 \text{ V}$)

(12 Marks)

<u> PART – B</u>

- 6 a. Explain briefly with expressions the properties of Negative feedback. (10 Marks)
 b. Explain about Shunt-Shunt feedback amplifier with diagram and obtain the expression for input impedance and output impedance. (10 Marks)
- 7 a. Explain instrumentation amplifier with neat circuit diagram. (05 Marks)
 b. Use the superposition principle to find the output voltage of the circuit shown in Fig. Q7 (b). (05 Marks)

- c. Explain logarithmic and antilogarithmic amplifiers with neat diagrams. (10 Marks)
- 8 a. Explain the dynamic operation of a CMOS inverter. (10 Marks)
 - b. Sketch a CMOS logic circuit that realizes the function $Y = \overline{ABC + DE}$, using AOI gate. (04 Marks)
 - c. Explain charge sharing problem in dynamic 3-input NAND circuits. (06 Marks)